Kā atvasināt funkcijas, kas saistītas ar kvadrātsakni

Autors: Joan Hall
Radīšanas Datums: 5 Janvārī 2021
Atjaunināšanas Datums: 23 Novembris 2024
Anonim
Derivatives of Radical Functions
Video: Derivatives of Radical Functions

Saturs

Aprēķinā atvasinātie instrumenti mēra funkcijas maiņas ātrumu attiecībā pret vienu no tā mainīgajiem, un atvasinājumu aprēķināšanai izmantotā metode ir diferenciācija. Funkcijas, kas ietver kvadrātsakni, diferencēšana ir sarežģītāka nekā kopējas funkcijas, piemēram, kvadrātiskās funkcijas, diferencēšana, jo tā darbojas kā funkcija citas funkcijas ietvaros. Ņemot skaitļa kvadrātsakni un paaugstinot to līdz 1/2, tiek iegūta tā pati atbilde. Tāpat kā jebkurai citai eksponenciālai funkcijai, ir jāizmanto ķēdes likums, lai atvasinātu funkcijas, kas saistītas ar kvadrātveida saknēm.

1. solis

Uzrakstiet funkciju, kas ietver kvadrātsakni. Pieņemsim, ka ir šāda funkcija: y = √ (x ^ 5 + 3x -7).

2. solis

Iekšējo izteiksmi x ^ 5 + 3x - 7 aizstāj ar ‘’ u ’’. Tādējādi tiek iegūta šāda funkcija: y = √ (u). Atcerieties, ka kvadrātsakne ir tas pats, kas skaitļa palielināšana līdz 1/2. Tādēļ šo funkciju var uzrakstīt kā y = u ^ 1/2.


3. solis

Izmantojiet ķēdes kārtulu, lai paplašinātu funkciju. Šis noteikums saka, ka dy / dx = dy / du * du / dx. Piemērojot šo formulu iepriekšējai funkcijai, iegūst dy / dx = [du ^ (1/2) / du] * du / dx.

4. solis

Iegūstiet funkciju attiecībā pret ‘’ u ’’. Iepriekšējā piemērā mums ir dy / dx = 1/2 * u ^ (1-1 / 2) * du / dx. Vienkāršojiet šo vienādojumu, lai atrastu dy / dx = 1/2 * 1 / √ (u) * du / dx.

5. solis

Nomainiet iekšējo izteiksmi no 2. soļa ‘’ u ’’ vietā. Tāpēc dy / dx = 1/2 * 1 / √ (x ^ 5 + 3x -7) * d (x ^ 5 + 3x -7) / dx.

6. solis

Pabeidziet atvasinājumu attiecībā pret x, lai atrastu galīgo atbildi. Šajā piemērā atvasinājumu izsaka dy / dx = 1/2 * 1 / √ (x ^ 5 + 3x -7) * (5x +3).